The Dickson subcategory splitting conjecture for pseudocompact algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative elements in the Cayley–Dickson algebras

We describe the alternative elements in An = R n the CayleyDickson algebras for n ≥ 4. Also we “measure” the failure of An with n ≥ 4 of being a normed algebra in terms of the alternative elements.

متن کامل

Monomorphisms between Cayley-Dickson Algebras

In this paper we study the algebra monomorphisms from Am = R 2m into An = R 2n for 1 ≤ m ≤ n, where An are the Cayley-Dickson algebras. For n ≥ 4, we show that there are many types of monomorphisms and we describe them in terms of the zero divisors in An.

متن کامل

The Splitting Subspace Conjecture

We answer a question by Niederreiter concerning the enumeration of a class of subspaces of finite dimensional vector spaces over finite fields by proving a conjecture by Ghorpade and Ram.

متن کامل

Identities for Algebras Obtained from the Cayley-dickson Process

The Cayley-Dickson process gives a recursive method of constructing a nonassociative algebra of dimension 2 for all n 0, beginning with any ring of scalars. The algebras in this sequence are known to be flexible quadratic algebras; it follows that they are noncommutative Jordan algebras: they satisfy the flexible identity in degree 3 and the Jordan identity in degree 4. For the integral sedenio...

متن کامل

Born-Infeld Lagrangian using Cayley-Dickson algebras

We rewrite the Born-Infeld Lagrangian, which is originally given by the determinant of a 4×4 matrix composed of the metric tensor g and the field strength tensor F , using the determinant of a (4·2n)×(4·2n) matrix H4·2n . If the elements of H4·2n are given by the linear combination of g and F , it is found, based on the representation matrix for the multiplication operator of the Cayley-Dickson...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2008

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2008.04.014